Subconvexity for half integral weight L-functions
نویسندگان
چکیده
منابع مشابه
Subconvexity Bounds for Automorphic L–functions
We break the convexity bound in the t–aspect for L–functions attached to cuspforms f for GL2(k) over arbitrary number fields k. The argument uses asymptotics with error term with a power saving, for second integral moments over spectral families of twists L(s, f ⊗χ) by grossencharacters χ, from our previous paper [Di-Ga]. §0. Introduction In many instances, for cuspidal automorphic forms f on r...
متن کاملCongruences for Fourier Coefficients of Half-integral Weight Modular Forms and Special Values of L−functions
Congruences for Fourier coefficients of integer weight modular forms have been the focal point of a number of investigations. In this note we shall exhibit congruences for Fourier coefficients of a slightly different type. Let f(z) = P∞ n=0 a(n)q n be a holomorphic half integer weight modular form with integer coefficients. If ` is prime, then we shall be interested in congruences of the form
متن کاملA Twisted Motohashi Formula and Weyl-subconvexity for L-functions of Weight Two Cusp Forms
We derive a Motohashi-type formula for the cubic moment of central values of L-functions of level q cusp forms twisted by quadratic characters of conductor q, previously studied by Conrey and Iwaniec and Young. Corollaries of this formula include Weylsubconvex bounds for L-functions of weight two cusp forms twisted by quadratic characters, and estimates towards the Ramanujan-Petersson conjectur...
متن کاملOn Hecke L-functions attached to half-integral weight modular forms
We would like to recall that in the case of Hecke eigenforms on Γ1 non-vanishing results for their Hecke L-functions at an arbitrary point s0 in the critical strip (not on the critical line) have been proved in [4] (cf. also [7]), using holomorphic kernel functions. This method was carried over to the case of half-integral weight in [8], for arbitrary level. However, in this approach for given ...
متن کاملWeak Subconvexity for Central Values of L-functions
A fundamental problem in number theory is to estimate the values of L-functions at the center of the critical strip. The Langlands program predicts that all L-functions arise from automorphic representations of GL(N) over a number field, and moreover that such L-functions can be decomposed as a product of primitive L-functions arising from irreducible cuspidal representations of GL(n) over Q. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2015
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-015-1504-x